Lecture Notes in Physics

Editorial Board

R. Beig, Wien, Austria
W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
P. Hänggi, Augsburg, Germany
G. Hasinger, Garching, Germany
K. Hepp, Zürich, Switzerland
W. Hillebrandt, Garching, Germany
D. Imboden, Zürich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Lipowsky, Golm, Germany
H. v. Löhneysen, Karlsruhe, Germany
I. Ojima, Kyoto, Japan
D. Sornette, Nice, France, and Zürich, Switzerland
S. Theisen, Golm, Germany
W. Weise, Garching, Germany
J. Wess, München, Germany
J. Zittartz, Köln, Germany
The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching – quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research to serve the following purposes:

- to be a compact and modern up-to-date source of reference on a well-defined topic;
- to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas;
- to be a source of advanced teaching material for specialized seminars, courses and schools.

Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive is available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer:

Dr. Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com
Modelling Critical and Catastrophic Phenomena in Geoscience

A Statistical Physics Approach
Preface

Geophysics, or physics modelling of geological phenomena, is as old and as established as geoscience itself. The statistical physics modelling of various geophysical phenomena, earthquake in particular, is comparatively recent. This book intends to cover these recent developments in modelling various geophysical phenomena, including the imposing classic phenomenon of earthquakes, employing various statistical physical ideas and techniques. This first book on statistical physics modelling of geophysical phenomena contains extensive reviews by almost all the leading experts in the field and should be widely useful to the graduate students and researchers in geoscience and statistical physics. It grew out of the lecture notes from a workshop on “Models of Earthquakes: Physics Approaches”, held in Saha Institute of Nuclear Physics, Kolkata, under the auspices of its Centre for Applied Mathematics and Computational Science in December 2005.

The book is divided in four parts. In the first part, tutorial materials are introduced. Chakrabarti introduces the fracture nucleation processes, their (extreme) statistics in disordered solids, in fibre bundle models and in the two fractal overlap models of earthquakes. In the next two chapters, Hemmer et al. and Kun et al. review the avalanche or quake statistics and the breaking dynamics in simple (mean-field like) fibre bundle models and in their extended versions, respectively. Hansen and Mathiesen discuss the scale invariance properties of the random and fractured surfaces.

In part II, physics models of earthquake and their statistical analysis are discussed in detail. Burridge recounts some of the early and very successful attempts like the spring-block models. Bhattacharyya discusses the recently introduced geometric models of earthquakes and their successes in capturing the statistics. The solid–solid friction and stick-slip models of earthquakes are discussed next by Matsukawa and Saito. Corral puts forward an intriguing analysis of the statistical correlations in various observed catalogue data for earthquakes. Similar spatio-temporal correlations in data and their analysis in the context of spring-block models are discussed by Kawamura. Spatio-temporal correlations between earthquakes and aftershocks are examined in
detail by de Rubeis et al. In view of such correlations, the possibilities of short-term predictions for relatively stronger earthquakes are then examined by Tabar et al. Finally, following a detailed survey of the inadequacies of our knowledge of faults, fracture, etc., and of their dynamics and statistics, Kagan argues why physics may still fail in making precise long-term predictions of earthquakes.

In the third part, some related modelling efforts are reviewed. Herrmann discusses the sand-dune formations and their physics models. Mehta reviews the dynamics of sand-piles and of ripple formation in the same, in the next chapter. Dynamics of plastic flow, the Portevin-Le Châtelier effect in particular, of stick-slips as in the peeling of adhesive tapes, etc., are discussed by Ananthakrishna and De. Next, Pradhan and Chakrabarti reviewed the statistical nature of various possible precursors in some established models of catastrophic failures in sand-piles or of fractures in composites.

In the final part, we include some short notes on some interesting and occasionally speculative analysis of phenomena or models in all these related fields.

As mentioned already, these up-to-date, detailed and penetrating reviews by the leading experts are expected to make this volume a profound guide book for the graduate students and researchers in the related fields. We are extremely thankful to these contributors for their intensive work and pleasant cooperations. We are also very much indebted to Arnab Das for his help in compiling and editing this book. Finally, we express our gratitude to Johannes Zittartz, Series Editor, LNP, and Christian Caron of Physics Editorial Department of Springer for their encouragement and support.

Kolkata
April 2006

Pratip Bhattacharyya
Bikas K. Chakrabarti
Contents

Part I Tutorial: Introductory Material

Statistical Physics of Fracture and Earthquake
B.K. Chakrabarti ... 3
1 Introduction ... 3
 1.1 Models of Fracture in Disordered Solids and Statistics 3
 1.2 Earthquake Models and Statistics 4
2 Fracture Statistics of Disordered Solids 7
 2.1 Griffith Energy Balance
 and Brittle Fracture Strength of Solids 7
 2.2 Extreme Statistics of the Fracture Stress 10
 2.3 Failure Statistics in Fibre Bundles 12
3 Two-Fractal Overlap Model of Earthquake and Its Statistics 19
4 Summary and Discussions .. 23
References ... 25

Rupture Processes in Fibre Bundle Models
P.C. Hemmer, A. Hansen, S. Pradhan 27
1 Introduction ... 27
2 Equal-Load-Sharing Fibre Bundles 30
 2.1 Burst Distribution: The Generic Case 30
 2.2 Burst Distribution: Nongeneric Cases 32
 2.3 Mapping onto a Random Walk Problem 35
 2.4 Crossover Behavior Near Criticality 38
 2.5 Avalanche Distribution at Criticality 40
 2.6 Recursive Dynamics ... 46
3 Fibre Bundles with Local Load Redistribution 46
 3.1 Stress Alleviation by Nearest Neighbors 46
 3.2 Intermediate Load-Sharing Models 48
 3.3 Elastic Medium Anchoring 49
References ... 54
Extensions of Fibre Bundle Models

F. Kun, F. Raischel, R.C. Hidalgo, H.J. Herrmann

1. Introduction ... 57
2. Fibre Bundle Model of Materials Failure 58
 2.1 Why Extensions are Necessary? 63
3. Gradual Degradation of Fibre Strength 65
 3.1 Continuous Damage Fibre Bundle Model 66
 3.2 Macroscopic Constitutive Behavior 67
 3.3 Simulation Techniques 69
 3.4 Bursts of Fibres Breakings 70
4. Variable Range of Load Sharing 72
 4.1 Load Transfer Function 72
 4.2 Macroscopic Strength of Bundles 73
 4.3 Microstructure of Damage 75
5. Damage Enhanced Creep in Fibre Bundles 77
 5.1 Viscoelastic Fibre Bundle 78
 5.2 Macroscopic Response 79
 5.3 Microscopic Damage Process 80
 5.4 Universality Classes of Creep Rupture 81
6. Failure of Glued Interfaces of Solid Blocks 82
 6.1 The Beam Model of Interface Failure Under Shear 82
 6.2 Constitutive Behavior 83
 6.3 Simulation Techniques 85
 6.4 Microscopic Damage Process 87
7. Discussion and Outlook 88

Survey of Scaling Surfaces

A. Hansen, J. Mathiesen

1. Introduction .. 93
2. Self-Affine Surfaces and Brownian Walks 93
3. Fractional Noise – White Noise 95
4. Lévy Flights .. 98
5. Fractal Surfaces ... 100
6. Multifractals .. 103
7. Multiaffine Surfaces 105
8. Anomalous Scaling of Self-Affine Surfaces 106
9. Conclusion ... 109

References ... 110
Part II Physics Models of Earthquake

Some Early Earthquake Source Models
R. Burridge ... 113

1 Introduction ... 113

2 The Double-Couple Point Source 115
 2.1 The Calculation ... 116
 2.2 Action, Reaction, etc. .. 116
 2.3 The Double Couple .. 117
 2.4 The Double-Couple Radiation Pattern 117

3 The Block-and-Spring Model .. 118
 3.1 Computational Model .. 122
 3.2 Equations of Motion (Newton) 124
 3.3 Energy Balance .. 124
 3.4 Numerical Experiment .. 124
 3.5 Shock and Aftershock .. 125
 3.6 Potential Energy During an Aftershock Sequence and at Other Times 126
 3.7 Omori’s Formula for Aftershock Rate 126
 3.8 Peak Kinetic Energy and Energy Radiated Versus Drop in Potential Energy 127

4 Continuum Model: Numerical ... 128
 4.1 Mathematical Formulation ... 129
 4.2 Setting Up the Integral Equations 130
 4.3 Integral Equation for Anti-Plane Strain 130
 4.4 Discretizing the Kernel .. 131
 4.5 The Discretization of K ... 131
 4.6 The Integral Equation for \dot{v} 132
 4.7 The Solution for $\dot{v} = \dot{u}_y$ 132
 4.8 Numerical Solution for Nucleation at a Point 134
 4.9 Plane Strain ... 134
 4.10 The Numerical Scheme .. 136
 4.11 The Numerical Solution ... 136
 4.12 The Exact Static Solution for Comparison 137
 4.13 Another Numerical Solution ... 137

5 A Dynamic Shear Crack with Friction 138
 5.1 The Setup ... 138
 5.2 Initial Stress ... 139
 5.3 Static Friction .. 140
 5.4 Dynamic Friction .. 140
 5.5 The Mathematical Formulation 140
 5.6 Symmetry ... 141
 5.7 Analysis Confined to the Plane $x = +0$ 141
 5.8 The Basic Integral Relationships 142
5.9 The Stress Ahead of the Crack ... 142
5.10 The Crack Edge ... 143
5.11 The Stopping Locus .. 143
5.12 A Simple Example: \(T = 1 - y^2 \) ... 144
5.13 The Residual Static Stress Drop ... 144
5.14 Radiated Far-Field Pulses ... 146
6 A Model for Repeating Events ... 147
6.1 Equations of Motion .. 147
6.2 On the Fault Plane .. 149
6.3 Nondimensionalization .. 149
6.4 Rate of Strain Between Events .. 150
6.5 The Parameters for Repeating Events 151

References .. 152

Geometric Models of Earthquakes
P. Bhattacharyya ... 155
1 Introduction .. 155
2 The Cantor Set ... 157
3 The Simplest Fractal-Overlap Model of a Fault 157
4 Time Series of Overlap Magnitudes .. 159
5 Analysis of the Time-Series .. 162
6 Emergence of a Power Law .. 166
References .. 168

Friction, Stick-Slip Motion and Earthquake
H. Matsukawa, T. Saito ... 169
1 Introduction .. 169
2 Friction ... 170
 2.1 Velocity and Waiting Time Dependence of Frictional Force and Earthquake .. 173
 2.2 Mechanism of Velocity and Waiting Time Dependence of Frictional Force .. 175
3 Stick-Slip Motion ... 178
4 Numerical Study of the Burridge–Knopoff Model 181
 4.1 Model ... 182
 4.2 Numerical Results ... 183
5 Summary and Discussion ... 186
References .. 188

Statistical Features of Earthquake Temporal Occurrence
´A. Corral .. 191
1 The Gutenberg–Richter Law and the Omori Law 192
2 Recurrence-Time Distributions and Scaling Laws 193
 2.1 Scaling Laws for Recurrence-Time Distributions 195
 2.2 Relation with the Omori Law ... 196
 2.3 Gamma Fit of the Scaling Function 197
Short-Term Prediction of Medium- and Large-Size Earthquakes Based on Markov and Extended Self-Similarity Analysis of Seismic Data

Why Does Theoretical Physics Fail to Explain and Predict Earthquake Occurrence?
Y.Y. Kagan

8.2 Several Problems and Challenges .. 341
8.3 Critical Continuum-state Branching Model of Earthquake Rupture .. 342
8.4 Earthquake Forecasting Attempts 347
9 Discussion ... 349
References ... 352

Part III Modelling Related Phenomena

Aeolian Transport and Dune Formation
H.J. Herrmann .. 363
1 Introduction .. 363
2 The Aeolian Field .. 364
3 Aeolian Transport of Sand .. 370
4 Inclusion of the Slip Face .. 379
5 Dunes ... 380
6 Conclusion ... 384
References ... 384

Avalanches and Ripples in Sandpiles
A. Mehta .. 387
1 Introduction .. 387
2 Avalanches in a Rotating Cylinder .. 388
 2.1 The Model .. 388
 2.2 Results .. 391
 2.3 Discussion .. 400
3 Coupled Continuum Equations: The Dynamics of Sandpile Surfaces .. 404
 3.1 Case A: The Edwards-Wilkinson Equation with Flow ... 407
 3.2 Case B: When Moving Grains Abound .. 409
 3.3 Case C: Tilt Combined with Flowing Grains .. 411
 3.4 Discussion of Coupled Equations .. 412
 3.5 Application to Ripple Formation .. 413
References ... 419

Dynamics of Stick-Slip: Some Universal and Not So Universal Features
G. Ananthakrishna, R. De ... 423
1 Introduction .. 424
2 Solid Friction ... 425
3 Stick-Slip Instability During Plastic Flow: The Portevin–Le Chatelier (PLC) Effect 428
 3.1 Dynamical Interpretation of Negative Strain Rate Sensitivity 431
 3.2 The Ananthakrishna’s Model ... 431
 3.3 Slow Manifold Analysis ... 432
4 Peeling of Adhesive Tapes: Stick-Slip Instabilities .. 435
Contents

4.1 Equation of Motion .. 436
5 Algorithm ... 439
 5.1 Results ... 440
6 Predictability of Slip Events in Power Law States 444
7 Conclusions .. 451
References ... 455

Search for Precursors in Some Models of Catastrophic Failures

S. Pradhan, B.K. Chakrabarti .. 459

1 Introduction .. 459
2 Precursors in Failure Models .. 459
 2.1 Composite Material Under Stress: Fibre Bundle Model 459
 2.2 Electrical Networks within a Voltage Difference:
 Random Fuse Model .. 467
 2.3 SOC Models of Sandpile .. 468
 2.4 Fractal Overlap Model of Earthquake 471
3 Conclusions .. 475
References ... 476

Part IV Miscellaneous Short Notes

Nonlinear Analysis of Radon Time Series Related to Earthquake

N.K. Das, H. Chauduri, R.K. Bhandari, D. Ghose, P. Sen, B. Sinha ... 481

1 Introduction .. 481
2 Methods of Analysis .. 482
 2.1 Phase Space Plot .. 482
 2.2 Fractal Dimension .. 483
 2.3 Correlation Dimension ... 484
 2.4 Largest Lyapunov Exponent (λ) 485
3 Results and Discussions .. 486
4 Conclusion and Outlook .. 489
References ... 490

A Thermomechanical Model of Earthquakes

B. Bal, K. Ghosh .. 491

1 Introduction .. 491
2 Earthquakes and Relaxation Oscillation 492
 2.1 Relaxation Oscillation in Pressure Cooker 493
 2.2 Relaxation Oscillation in Pop-pop Boat 495
3 Earthquake Prediction .. 496
References ... 498
Fractal Dimension of the 2001 El Salvador Earthquake Time Series
Md. Nurujjaman, R. Narayanan, A.N.S. Iyengar 499
1 Introduction .. 499
2 Multifractal Analysis ... 499
 2.1 Wavelet Analysis .. 500
 2.2 Singularity Detection ... 501
 2.3 Wavelet Transform Modulus Maxima 501
3 Results and Discussion ... 501
References ... 504

Approach in Time to Breakdown in the RRTN Model
A.K. Sen, S. Mozumdar .. 507
1 Introduction .. 507
 1.1 The Model .. 508
2 Some Features of the Model ... 508
 2.1 Percolation Threshold .. 508
 2.2 Non-linear Response .. 509
 2.3 Dielectric Breakdown as a Paradigm 509
3 Approach to Breakdown in Time 509
4 Analysis of Data and Conclusion 512
References ... 513

Critical Behaviour of Mixed Fibres with Uniform Distribution
U. Divakaran, A. Dutta .. 515
References ... 520

Index ... 521
M. Allamehzadeh
Department of Seismology
The International Institute of Earthquake Engineering and Seismology
IIEES, P.O. Box 19531
Tehran, Iran
Mallam@iiees.ac.ir

G. Ananthakrishna
Materials Research Centre and Centre for Condensed Matter Theory
Indian Institute of Science
Bangalore-560012, India
garani@mrc.iisc.ernet.in

M. Akbari
Department of Seismology
The International Institute of Earthquake Engineering and Seismology
IIEES, P.O. Box 19531
Tehran, Iran
mary.Akbari@gmail.com

A. Bahraminasab
ICTP
Strada Costiera 11
I-34100 Trieste, Italy
abahrami@ictp.it

Bijay Bal
Saha Institute of Nuclear Physics
1/AF Bidhannagar
Kolkata-700064
India
bijaybhushan.bal@saha.ac.in

Rakesh K. Bhandari
Variable Energy Cyclotron Center
1/AF, Bidhannagar
Kolkata-700064

Pratip Bhattacharyya
Physics Department
Gurudas College
Narkeldanga
Kolkata-700054
and
Centre for Applied Mathematics and Computational Science
Saha Institute of Nuclear Physics
Kolkata-700064
pratip.bhattacharyya@saha.ac.in

Robert Burridge
Institute for Mathematics and its Applications
400 Lind Hall
207 Church Street S.E.
Minneapolis, MN 55455-0436
and
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton Street E34 Cambridge
MA 02142-1324
burridge@erl.mit.edu

Bikas K. Chakrabarti
Theoretical Condensed Matter Physics Division and Centre for Applied Mathematics and Computational Science
Saha Institute of Nuclear Physics
1/AF, Bidhan Nagar, Kolkata-700064
India
bikas.k.chakrabarti@saha.ac.in

Hirok Chauduri
Saha Institute of Nuclear Physics
1/AF, Bidhan Nagar
Kolkata-700064

Álvaro Corral
Departament de Física
Facultat de Ciències
Universitat Autònoma de Barcelona
E-08193 Bellaterra
Spain
Alvaro.Corral@uab.es

Nisith K. Das
Variable Energy Cyclotron Center
1/AF, Bidhan Nagar
Kolkata-700064
nkdas@veccal.ernet.in.

Rumi De
Materials Research Centre
Indian Institute of Science
Bangalore-560012, India
and
Department of Materials and Interfaces
Weizmann Institute of Science
Rehovot 76100, Israel
rumi.de@weizmann.ac.il

Uma Divakaran
Department of Physics
Indian Institute of Technology
Kanpur 208016, India
udiva@iitk.ac.in

Amit Dutta
Department of Physics
Indian Institute of Technology
Kanpur 208016, India
dutta@iitk.ac.in

S. Fayazbakhsh
Department of Physics
Sharif University of Technology
P.O. Box 11365-9161, Tehran, Iran
S_Fayazbakhsh@mehr.sharif.edu

F. Ghasemi
Department of Physics
Sharif University of Technology
P.O. Box 11365-9161, Tehran, Iran
f_ghasemi@mehr.sharif.edu

Debasis Ghose
Saha Institute of Nuclear Physics
1/AF, Bidhan Nagar
Kolkata-700064, India

Kuntal Ghosh
Saha Institute of Nuclear Physics
1/AF, Bidhan Nagar, Kolkata-700064
India
kuntal.ghosh@saha.ac.in

Alex Hansen
Department of Physics
Norwegian University of Science and Technology
N-7491 Trondheim
Norway
alex.hansen@ntnu.no

Per C. Hemmer
Department of Physics
Norwegian University of Science and Technology
N-7491 Trondheim, Norway
per.hemmer@ntnu.no
Hans J. Herrmann
Departamento de Física
Universidade Federal do Ceará
Campus do Pici
60451-970 CE, Brazil
hans@ica1.uni-stuttgart.de

F. Kun
Department of Theoretical Physics
University of Debrecen
P. O. Box: 5, H-4010 Debrecen
 Hungary
feri@dtp.atomki.hu

J. Herrmann
Department of Theoretical Physics
University of Debrecen
P. O. Box: 5, H-4010 Debrecen
 Hungary

Vittorio Loreto
“La Sapienza” University
Physics Department and INFM
Center for Statistical Mechanics and Complexity
Roma, Italy
pietronero@roma1.infn.it and
loreto@roma1.infn.it

R.C. Hidalgo
Department of Fundamental Physics
University of Barcelona
Franques 1, 08028 Barcelona
Spain

Joachim Mathiesen
Department of Physics
Norwegian University of Science and Technology
N-7491 Trondheim, Norway
Joachim.Mathiesen@ntnu.no

A.N. Sekar Iyengar
Saha Institute of Nuclear Physics
1/AF, Bidhannagar
Kolkata-700064, India

Hiroshi Matsukawa
Department of Physics and Mathematics
Aoyama Gakuin University
5-10-1 Fuchinobe
Sagamihara 229-8558
Japan
hm@phys.aoyama.ac.jp

Yan Y. Kagan
Department of Earth and Space Sciences
University of California
Los Angeles, California
USA
kagan@equake.ess.ucla.edu

Anita Mehta
SN Bose National Centre for Basic Sciences
Block JD, Sector III Salt Lake
Calcutta 700 098, India
anita@bose.res.in

K. Kaviani
Department of Physics
Az-zahra University
P.O.Box 19834, Tehran
Iran
kaviani@scintist.com

M. Mokhtari
Department of Seismology
The International Institute of Earthquake Engineering

Hikaru Kawamura
Department of Earth and Space Science
Faculty of Science
Osaka University
Toyonaka 560-0043, Japan
kawamura@ess.sci.osaka-u.ac.jp

and
loreto@roma1.infn.it

and

Joachim.Mathiesen@ntnu.no

Anita Mehta
SN Bose National Centre for Basic Sciences
Block JD, Sector III Salt Lake
Calcutta 700 098, India
anita@bose.res.in

M. Mokhtari
Department of Seismology
The International Institute of Earthquake Engineering
and Seismology, (IIEES)
P.O. Box 19531
Tehran, Iran
Mokhtari@iiees.ac.ir

Shubhankar Mozumdar
South Point High School
82/7A Ballygunge Place
Kolkata-700019, India

Ramesh Narayanan
Saha Institute of Nuclear Physics
1/AF, Bidhannagar
Kolkata-700064, India

M.D. Niry
Department of Physics
Sharif University of Technology
P.O. Box 11365-9161
Tehran, Iran
mdniry@mehr.sharif.edu

Md. Nurujjaman
Saha Institute of Nuclear Physics
1/AF, Bidhannagar
Kolkata-700064, India

J. Peinke
Carl von Ossietzky University
Institute of Physics
D-26111 Oldenburg, Germany
peinke@uni-olden-burg.de

Luciano Pietronero
“La Sapienza” University
Physics Department
and INFM
Center for Statistical Mechanics
and Complexity
Roma, Italy
pietronero@roma1.infn.it

Srutarshi Pradhan
Department of Physics
Norwegian University
of Science and Technology
N-7491 Trondheim, Norway
pradhan.srutarshi@ntnu.no

F. Raischel
Institute for Computational Physics
University of Stuttgart
Pfaffenwaldring 27
D-70569 Stuttgart, Germany

derubeis@ingv.it
tosi@ingv.it

Valerio De Rubeis
Istituto Nazionale di Geofisica e
Vulcanologia
Roma, Italy

Muhammad Sahimi
Department of Chemical
Engineering and Material Science
University of Southern California
Los Angeles
CA 90089, USA
moe@iran.usc.edu

Tatsuro Saito
Department of Physics
and Mathematics
Aoyamagakuuin University
5-10-1 Fuchinobe
Sagamihara 229-8558
Japan

Asok K. Sen
TCMP Division
Saha Institute of Nuclear Physics
1/AF Bidhannagar
Kolkata-700064
India
asokk.sen@saha.ac.in

Prasanta Sen
Saha Institute of Nuclear Physics
1/AF, Bidhannagar
Kolkata-700064
India
prasanta.sen@saha.ac.in
Bikash Sinha
Variable Energy Cyclotron Center
1/AF, Bidhannagar, Kolkata-700064
India
and
Saha Institute of Nuclear Physics
1/AF, Bidhannagar
Kolkata-700064
India

S. Tabatabai
Institute of Geophysics
University of Tehran
Iran
S.Tabatai@tabagroup.com

M. Reza Rahimi Tabar
Department of Physics
Sharif University of Technology
P.O. Box 11365-9161
Tehran, Iran

and
CNRS UMR 6202
Observatoire de la
Côte d’Azur
BP 4229
06304 Nice Cedex 4, France
rahimitabar@sharif.edu

Patrizia Tosi
Istituto Nazionale di
Geofisica e Vulcanologia
Roma, Italy
derubeis@ingv.it and
tosi@ingv.it

M. Vesaghi
Department of Physics
Sharif University of Technology
P.O. Box 11365-9161
Tehran, Iran
vesaghi@sharif.edu